

"Innovation in Composite CNG Cylinders"

JEC ASIA 2009 Automotive & Mass Transport Forum

DELIVERING SOLUTIONS | TRANSFORMING MARKETS | ENHANCING LIVES

Owens Corning Company Highlights

HUNDRED

- Building Materials and Composites
- Founded 1938
- \$6 Billion sales in 2008
- 16,500 employees in 30 countries
- Industry leader in all markets served
 - Glass fiber insulation, roofing & asphalt and composite solutions
- First company to trademark a color Pink
- A Fortune 500 company for 55 consecutive years
- 2008 Fortune magazine most admired companies
- OCV[™] Reinforcements, OCV[™] Technical Fabrics, OCV[™] Non-Woven Technologies

Agenda

Slide 4.	NGV Market Status & Trends
Slide 5.	CNG Fuel – Key Drivers
Slide 6.	Classification of Cylinders
Slide 7.	CNG Cylinder Needs
Slide 8.	Why Composite?
Slide 9.	High Performance Reinforcements Product Line
Slide 10.	Innovation in Composite Cylinder
Slide 11.	Reinforcements Properties Comparison
Slide 12.	Value Proposition – Case Study
Slide 13.	Cost Structure of Type 4 CNG Cylinder – Case Study
Slide 14.	OCV XStrand® makes High-Performance Affordable for
	CNG Composite Cylinder
Slide 15.	Safer, Lighter, Stronger, Affordable

NGV Market Status & Trends

- 2020 forecasts a NGV population of 50 mill at 15%
 CAGR
- Asia & S. America are leading the growth
- Developing countries are leading the growth
 - Cheaper fuel & lower pollution
- In Asia, India & China have low NGV population & low penetration offering greater scope for growth

CNG Fuel – Key Drivers

Copyright© Beijing Tianhai

- Rising Pollution & Environmental concerns
 - Natural gas is more environmentally friendly
 - Particle matter
 - Hydro Carbon
 - NOx
 - Carbon Monoxide (CO)
- Supply security
 - Crude Oil: 42 years consumption. Reserve in 61 countries (*)
 - Natural Gas: 58 years consumption. Reserve in 111 countries (*)
 - (*) Based on year 2007 proven reserves & consumption
- Lower price & more energy efficient
- Proven Technology in Transportation
 - Large scale since 1960

Classification of CNG Cylinders

	Type 1	Type 2	Type 2 Type 3	
Market Share (%)	93%	4%	< 2%	< 2%
Structure	Metal	Metal Liner reinforced with resin Impregnated continuous filament (hoop Wrap)	Metal Liner reinforced with resin Impregnated continuous filament (fully Wrap)	Resin impregnated continuous filament with a non-metallic liner
Most commonly used	CrMo steel	CrMo steel with Glass Fiber	Aluminium with HP Glass &/or Carbon	HDPE liner with Carbon
Indicative cost - US\$/litre	\$3 to \$5	\$5 to \$7	\$9 to \$14	\$11 to \$18
Indicative weight - Kg/litre	0.9~1.3	0.8~1.0	0.4~0.5	0.3~0.4

Sources: CompositeMarketReports.com CompositeWorld.com

 Evident weight reduction (up to 75%) in adopting Type 3 & 4 but comes at a cost...

CNG Cylinder Needs

High specific strength, modulus, toughness

- High operating pressure > 200bar
 - Fuel density (n=PV/RT) > distance to re-fuel

- Low weight could lower fuel consumption allow for payload increase
- Impact resistance
- Bullet resistant per testing protocol
- Long life (Static and Cyclic fatigue resistance)
 - Determines design "Safety Factors"

Cylinder Type	Fibre	Minimum Burst	Minimum Stress
	Reinforcement	Ratio	Ratio
Type 1		2.25	N/A
Type 2	Glass	2.50	2.75
	Aramid	2.35	2.35
	Carbon	2.35	2.35
Type 3	Glass	3.50	3.65
	Aramid	3.00	3.10
	Carbon	2.35	2.35
Type 4	Glass	3.65	3.65
	Aramid	3.10	3.10
	Carbon	2.35	2.35

Why Composites?

Copyright© 2009 Quantum Technologies

- Weight Reduction
 - Reduces fuel consumption
 - Reduces environmental footprint
 - Increases distance between refueling
- Corrosion resistance
 - Improves Safety
 - Increases Life
 - Reduces Maintenance
- Design flexibility
 - Improves Fuel System integration (Type 4 cylinder)

High Performance Reinforcements Product Line

WindStrand® Reinforcements FliteStrand® Reinforcements ShieldStrand® Reinforcements XStrand[®] Reinforcements

Available as Single End Roving or Fabric

Innovation in Composite Cylinders

High Performance Reinforcements

 XStrand[®] is one of the latest innovative solution from Owens Corning for the manufacturing of Industrial, Sports & Recreation items at affordable cost & sustainable availability.

Practical Benefits of XStrand® Reinforcements

Compare to E-Glass:

- Up to 30% increased strength
- Up to 17% increased modulus
- Up to 30% lower coefficient of linear thermal expansion
- Up to 10x better fatigue properties
- Superior corrosion resistance
- Higher temperature resistance

Reinforcements Properties Comparison

	E-Glass	OCV Advantex®	OCV XStrand®	AGY S2 Glass ^(*)	T700 Carbon Fiber (**)
Pristine Fiber Tensile Strength <i>(MPa)</i>	3,448	3,751	4,605	4,590-4,830	4,900
Impregnated Fiber Tensile Strength <i>(MPa)</i>	2,137	2,413	3,448	3,660-4,280	NA
Modulus (<i>GPa</i>)	72	81	87	86-90	230
Density (g/cc)	2.60	2.63	2.52	2.46-2.49	1.80
Specific Pristine Tensile Strength (m)	1.35*10 ⁵	1.46*10 ⁵	1.86*10 ⁵	1.88*10 ⁵ — 2.00*10 ⁵	NA
Specific Tensile Modulus (m)	2.82*10 ⁶	3.14*10 ⁶	3.52*10 ⁶	3.52*10 ⁶ - 3.73*10 ⁶	NA

^(*) Source AGY Pub. LIT2004-341

^(*) Source TORAYCA.com /properties

Value Proposition - Case Study -

Type 4 – 190 liter CNG Cylinder -Case Study- (Material SA- Belgium)

- XStrand® reinforcement enables about 40% cost reduction versus Carbon/ Epoxy Type 4 solution (with obviously a weight penalty).
- XStrand® cylinder is half the weight of a typical steel tank.

Cost Structure of Type 4 CNG Cylinder – Case Study

Source: Material SA - Belgium

- Basis: 190L, 200bar CNG cylinder
 - Direct Cost (fiber, resin, production)

OCV XStrand® makes High-Performance Affordable for CNG Composite Cylinder

Affordable Lightweight Performance

- High Strength, High Modulus glass fiber available in Large quantities
- Allowing Comparable cost positioning to E-Glass reinforced CNG type 4 cylinder with weight Reduction
- Substitution for S-Glass in CNG Type 3 & 4CNG cylinder

 at a lower cost position
- Replace or Combine with carbon fiber in CNG type 3 & 4 where Cost is a critical factor to increase Market Penetration

Drivers for Substitution of Type 1 & 2 CNG Cylinder

- Shortage of seamless steel tubes
- Increase concerns for Environmental impact
- Better Integration to fit Car design
- Experience consolidation in Composite tanks manufacturing
- Evolution to Higher Pressure systems to reduce Payload

Opportunities

- Market Penetration through the gain of Technology leadership
- Full recognition of CNG Fuel system from Car manufacturers (new car design integrating CNG fuel system)
- Reduction of Safety factors for High-Performance Glass Fiber

Safer, Lighter, Stronger, Affordable

Market Drivers -

- Improves Safety
- Reduces fuel consumption
- Reduces environmental footprint
- Reduces distance to refuel
- Available
- Affordable

The success of NGV mass development will pass through the development of Affordable High-Performance Materials & Technology to bring storage tanks beyond actual limits.

Thank you

More information:

www.owenscorning.com/composites/

www.ocvreinforcements.com/hp/